Concours blanc n°2 - Correction

Exercice 1

1. a) Soit g la fonction définie sur $[0; +\infty[$ par $: \forall t \ge 0, g(t) = \exp(\sqrt{t}).$

g est continue sur $[0;+\infty[$, donc elle admet une primitive G.

Donc
$$\forall x \ge n$$
, $f_n(x) = \int_n^x exp(\sqrt{t})dt = [G(t)]_n^x = G(x) - G(n)$.

Sur [n; $+\infty$ [, g est continue donc G est de classe C^1 , donc f_n aussi.

De plus, $\forall x \ge n$, $f_n'(x) = G'(x) = g(x) = exp(\sqrt{x}) > 0$. Donc f_n est croissante sur $[n; +\infty[$.

b) Soit
$$x \in [n; +\infty[. \ \forall \ t \in [n;x], \ t \ge n \ \sqrt{t} \ge \sqrt{n} \ \exp(\sqrt{t}) \ge \exp(\sqrt{n}).$$

Donc d'après l'inégalité de la moyenne (les bornes sont dans le bon sens),

$$\int_n^x \exp(\sqrt{t}) dt \geq \exp(\sqrt{n})(x-n) \qquad f_n(x) \geq \exp(\sqrt{n})(x-n).$$

 $\lim_{x\to +\infty} \exp(\sqrt{n})(x-n) = +\infty, \text{ donc par comparaison } \lim_{x\to +\infty} f_n(x) = +\infty.$

c) f_n est continue et strictement croissante sur $[n; +\infty[$.

De plus $f_n(n) = 0$ et $\lim_{x \to +\infty} f_n(x) = +\infty$. $1 \in [0; +\infty[$ donc d'après le théorème de la bijection, l'équation $f_n(x) = -\infty$.

1 admet une unique solution u_n sur $[n; +\infty[$.

$$2. \ a) \ \forall n \in {\rm I\! N}, \, u_n \geq n \quad \lim_{n \, \to \, +\infty} n = + \, \infty \ donc \ par \ comparaison \ \lim_{n \, \to \, +\infty} u_n = + \, \infty.$$

b)
$$\forall t \in [n;u_n] \quad n \le t \le u_n \quad donc \ exp(\sqrt{n}) \le exp(\sqrt{t}) \le exp(\sqrt{u_n})$$

Donc par inégalité de la moyenne, $(u_n-n)exp(\sqrt{n}) \leq \int_n^{un} exp(\sqrt{t})dt \leq exp(\sqrt{u_n})(u_n-n)$

$$(u_n-n)exp(\sqrt{n}) \leq 1 \leq exp(\sqrt{u_n})(u_n-n)$$

De la première inégalité, on obtient : $u_n - n \le \exp(-\sqrt{n})$.

De la deuxième : $exp(-\sqrt{u_n}) \le u_n - n$ donc $exp(-\sqrt{u_n}) \le u_n - n \le exp(-\sqrt{n})$.

3. a) Pour que $u_n-n \le 10^{-4}$, il suffit que exp(- \sqrt{n}) $\le 10^{-4}$. D'où le programme suivant : n=0

while np.exp(-np.sqrt(n))>1E-4:

n=n+1

print(n) (On trouve n = 85)

b)
$$\exp(-\sqrt{n}) \le 10^{-4} \Leftrightarrow -\sqrt{n} \le \ln(10^{-4}) \Leftrightarrow -\sqrt{n} \le -4\ln(10) \Leftrightarrow \sqrt{n} \ge 4\ln(10) \Leftrightarrow n \ge 16(\ln(10))^2$$

 $\ln(10) \approx 2.3$ donc $(\ln(10))^2 \approx 5.29 \approx 5.3$ $16(\ln(10))^2 \approx 16 \times 5.3 \approx 84.8$. Donc on trouve $n = 8$

4. a)
$$\forall n \in \mathbb{N}, 0 \le v_n \le \exp(-\sqrt{n})$$
. $\lim_{n \to +\infty} \exp(-\sqrt{n}) = 0$ donc par encadrement, $\lim_{n \to +\infty} v_n = 0$.

b) Posons f la fonction définie sur [-1;
$$+\infty$$
[par : $f(x) = \sqrt{1+x} - 1 - \frac{x}{2}$.

f est dérivable sauf en -1 et
$$\forall x > -1$$
, $f'(x) = \frac{1}{2\sqrt{1+x}} - \frac{1}{2} = \frac{1-\sqrt{1+x}}{2\sqrt{1+x}}$

Or,
$$1 - \sqrt{1 + x} \ge 0 \Leftrightarrow \sqrt{1 + x} \le 1 \Leftrightarrow 1 + x \le 1 \Leftrightarrow x \le 0$$
. Donc:

(Jr, 1 − \	$\int 1 + X$	2 U ←	> VI -	$\vdash X \leq 1$. ← I -
	X	-1		0		$+\infty$
	f '(x)	-	H	0	_	
	f(x)	70				
						\rightarrow

f(0) = 0 donc le maximum de f est 0.

Donc
$$\forall x \ge -1$$
, $f(x) \le 0$ $\sqrt{1+x} \le 1 + \frac{x}{2}$.

On peut également : _ montrer que la fonction $h(x) = \sqrt{1+x}$ est concave sur]-1 ;+ ∞ [et en déduire que la courbe est en-dessous de sa tangente en 0

_ montrer que $\forall x > -1 \ 1 + x \le \left(1 + \frac{x}{2}\right)^2$ et utiliser la croissance de la fonction racine sur $[0; +\infty[$ (en

précisant que
$$1 + \frac{x}{2} \ge 0$$

c)
$$\sqrt{u_n} = \sqrt{n + v_n} = \sqrt{n} \sqrt{1 + \frac{v_n}{n}} \le \sqrt{n} \left(1 + \frac{v_n}{2n}\right)$$
 d'après la question (b) avec $x = \frac{v_n}{n}$

$$\sqrt{u_n} \leq \sqrt{n} + \frac{v_n}{2\sqrt{n}} \quad donc - \sqrt{u_n} \geq -\sqrt{n} - \frac{v_n}{2\sqrt{n}} \quad exp\big(-\sqrt{u_n}\big) \geq exp\bigg(-\sqrt{n} - \frac{v_n}{2\sqrt{n}}\big)$$

$$\exp(-\sqrt{u_n}) \ge \exp(-\sqrt{n})\exp(-\frac{v_n}{2\sqrt{n}}).$$

d) D'après les questions 2 (b) et 4 (c), on a : $\exp(-\sqrt{n})\exp(-\frac{v_n}{2\sqrt{n}}) \le v_n \le \exp(-\sqrt{n})$

$$exp(-\sqrt{n}) > 0 \text{ donc } exp\left(-\frac{v_n}{2\sqrt{n}}\right) \le \frac{v_n}{exp(-\sqrt{n})} \le 1$$

$$\underset{n \, \rightarrow \, +\infty}{\text{lim}} v_n = 0 \text{ donc } \underset{n \, \rightarrow \, +\infty}{\text{lim}} - \frac{v_n}{2\sqrt{n}} = 0 \text{ donc } \underset{n \, \rightarrow \, +\infty}{\text{lim}} \exp \biggl(- \frac{v_n}{2\sqrt{n}} \biggr) = 1.$$

Donc par encadrement, $\lim_{n \to +\infty} \frac{v_n}{\exp(-\sqrt{n})} = 1$ donc $v_n \sim_{+\infty} \exp(-\sqrt{n})$.

Exercice 2 Partie A:

1. $\forall t \ge 0$, p'(t) = -k(f(t) - g(t)) = -k(-a + b.p(t) - (c - d.p(t)) = ka - kb.p(t) + kc - kd.p(t)

Donc p'(t) + k(d + b)p(t) = k(a + c). Donc p est solution de l'équation y' + k(d + b)y = k(a + c).

2. Il y a une trajectoire d'équilibre quand il y a une solution constante.

$$y' = 0$$
 donc $k(d +b)y = k(a + c)$ comme $k \ne 0$ et $b + d \ne 0$, $y = \frac{a+c}{b+d}$

Les solutions de l'équation homogène sont : $y(t) = \lambda \cdot \exp(-k(d+b)t), \lambda \in \mathbb{R}$

Donc l'ensemble des solutions est : $y(t) = \frac{a+c}{b+d} + \lambda.exp(-k(d+b)t), \lambda \in \mathbb{R}$

3.
$$p(0) = p_0 \Leftrightarrow \frac{a+c}{b+d} + \lambda = p_0 \Leftrightarrow \lambda = p_0 - \frac{a+c}{b+d}$$
 donc $p(t) = \frac{a+c}{b+d} + \left(p_0 - \frac{a+c}{b+d}\right) \exp\left(-k(d+b)t\right)$

$$k(d+b) > 0 \text{ donc } \lim_{t \to +\infty} \exp\left(-k(d+b)t\right) = 0 \qquad \lim_{t \to +\infty} p(t) = \frac{a+c}{b+d}. \text{ La limite ne dépend pas de } p_0.$$

Partie B: 1. a) Il s'agit d'une équation différentielle linéaire d'ordre 2.

Solutions de l'équation homogène y'' + 3y' + 2y = 0:

L'équation caractéristique est : $r^2 + 3r + 2 = 0$ (r + 1)(r + 2) = 0 (car -1 est racine évidente)

Les racines sont -1 et -2.

Donc les solutions de l'équation homogène sont les fonctions : $y(t) = \lambda e^{-t} + \mu e^{-2t}$, avec $(\lambda, \mu) \in \mathbb{R}^2$

$$Donc\ y(t) = \lambda \left(1 - t + \frac{(-t)^2}{2} + o((-t)^2) \right) + \mu \left(1 - 2t + \frac{(-2t)^2}{2} + o((-2t)^2) \right) = \lambda + \mu + (-\lambda - 2\mu)t + \left(\frac{\lambda}{2} + 2\mu \right)t^2 + o(t^2)$$

2. y est de classe C^2 sur \mathbb{R} comme produit de fonctions de classe C^2 , et $\forall t \in \mathbb{R}$,

$$y'(t) = ae^t + (at + b)e^t = (at + a + b)e^t$$
 $y''(t) = ae^t + (at + a + b)e^t = (at + 2a + b)e^t$

Donc
$$y''(t) + 3y'(t) + 2y(t) = (at + 2a + b + 3(at + a + b) + 2(at + b))e^{t} = (6at + 5a + 6b)e^{t}$$

Donc y(t) est solution de (E) ssi
$$\begin{cases} 6a = 2 \\ 5a + 6b = -1 \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{3} \\ 6a = -1 - \frac{5}{3} \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{3} \\ b = -\frac{8}{18} = -\frac{4}{9} \end{cases} \text{ donc y(t)} = \left(\frac{1}{3}t - \frac{4}{9}\right)e^{t}$$

Les solutions de l'équation générale sont les fonctions : $y(t) = \lambda e^{-t} + \mu e^{-2t} + \left(\frac{1}{3}t - \frac{4}{9}\right)e^t$ avec $(\lambda, \mu) \in \mathbb{R}^2$

3. On a alors :
$$\forall \ t \in {\rm I\!R}, \ y'(t) = -\lambda e^{-t} - 2\mu e^{-2t} + \frac{1}{3}e^t + \left(\frac{1}{3}t - \frac{4}{9}\right)e^t = -\lambda e^{-t} - 2\mu e^{-2t} + \left(\frac{1}{3}t - \frac{1}{9}\right)e^t$$

$$\begin{cases} y(0) = 1 \\ y'(0) = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda + \mu - \frac{4}{9} = 1 \\ -\lambda - 2\mu - \frac{1}{9} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda + \mu = \frac{13}{9} \\ -\lambda - 2\mu = \frac{1}{9} \end{cases} \Leftrightarrow \begin{cases} \lambda + \mu = \frac{13}{9} \\ -\mu = \frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \mu = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \mu = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \mu = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \mu = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \mu = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \mu = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \mu = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = 3 \\ \mu = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = 3 \\ \mu = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = 3 \\ \mu = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = 3 \\ \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = 3 \\ \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 \leftarrow L_1 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 + L_2 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -\frac{14}{9} L_2 + L_2 + L_2 + L_2 \end{cases} \Leftrightarrow \begin{cases} \lambda = -$$

Exercice 3

1. a) $\forall x \in [0; +\infty[, x \ge 0 \text{ et } \exp(-x^2/2) \ge 0 \text{ donc } f(x) \ge 0 \text{ et } f \text{ est nulle sur }]-\infty;0[, donc f \text{ est positive sur }]\mathbb{R}.$ f est continue sur $]-\infty;0[$ (fonction nulle) et sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ sauf peut-être en $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continue sur $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), donc f est continues are $]0; +\infty[$ (produit de fonctions continues), d

f est à support sur $[0; +\infty[$. Soit $T \ge 0$. $\int_0^T f(x) dx = \int_0^T x \cdot \exp(-x^2/2) dx = [-\exp(-x^2/2)]_0^T = -\exp(-T^2/2) + 1$ $\lim_{T \to +\infty} 1 - \exp(-T^2/2) = 1$ donc $\int_{-\infty}^{+\infty} f(x) dx$ converge et vaut 1. Donc f est une densité de probabilité.

b)
$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} x^2 \exp(-x^2/2) dx = 1$$

La fonction étant paire,
$$2 \int_0^{+\infty} \frac{1}{\sqrt{2\pi}} x^2 \exp(-x^2/2) dx = 1$$
 $\int_0^{+\infty} x^2 \exp(-x^2/2) dx = \frac{\sqrt{2\pi}}{2}$

$$\int_0^{+\infty} x.f(x)dx = \sqrt{\frac{\pi}{2}} \quad \text{donc } X \text{ admet une espérance et } E(X) = \sqrt{\frac{\pi}{2}}.$$

2.
$$\forall x \in \mathbb{R}, F_X(x) = \int_{-\infty}^{x} f(t)dt$$
 _ si x < 0, $F_X(x) = \int_{-\infty}^{x} 0dt = 0$

_ si x
$$\geq$$
 0, $F_X(x) = \int_{-\infty}^{0} 0 dt + \int_{0}^{x} t.exp(-t^2/2)dt = 1 - exp(-x^2/2)$ (d'après qu.1)

$$F_X(x) = \begin{cases} 0 \text{ si } x < 0 \\ 1 - exp(-x^2/2) \text{ si } x \ge 0 \end{cases}$$

3.
$$\forall x \in \mathbb{R}, F_Z(x) = P(Z \le x) = P(X^2 \le x)$$

_ si
$$x < 0$$
 : $X^2 \le x$ n'a pas de solution donc $F_Z(x) = 0$

$$si \ x \ge 0, \ F_Z(x) = P(-\sqrt{x} \le X \le \sqrt{x}) = F_X(\sqrt{x}) - F_X(-\sqrt{x})$$

Or
$$\sqrt{x} \ge 0$$
 et $-\sqrt{x} \le 0$ donc $F_Z(x) = 1 - \exp(-\sqrt{x^2/2}) - 0 = 1 - \exp(-x)$. $F_Z(x) = \begin{cases} 0 \text{ si } x < 0 \\ 1 - \exp(-x) \text{ si } x \ge 0 \end{cases}$

$$4) \ a) \ \forall \ x \in {\rm I\!R}, \ G_2(x) = F_{Y2}(x) = P(Y_2 \le x) = P\bigg(\frac{X}{\sqrt{2}} \le x\bigg) = P(X \le x\sqrt{2}) \ (car \ \sqrt{2} > 0) = F_X(x\sqrt{2})$$

$$x\sqrt{2}\geq 0 \Leftrightarrow x\geq 0 \text{ donc si } x<0, \ G_2(x)=0 \quad \text{ si } x\geq 0, \ G_2(x)=1-exp\big(-\big(x\sqrt{2}\big)^2/2\big)=1-exp(-x^2).$$

$$Donc \ G_2(x) = \left\{ \begin{array}{l} 1 - exp(\text{-}\ x^2) \ si \ x \geq 0 \\ 0 \ si \ x < 0 \end{array} \right.$$

b) On voit que G_2 est continue et de classe C^1 sur]- ∞ ;0[et]0 ; + ∞ [comme fonction nulle et différence de fonctions de classe C^1 .

De plus : $\lim_{x\to 0} 0 = 0$ et $\lim_{x\to 0} 1 - \exp(-x^2) = 0$ donc G_2 est continue en 0.

 G_2 est continue sur \mathbb{R} et de classe C^1 sur \mathbb{R} sauf peut-être en 0, donc Y_2 est une variable à densité.

$$G_2\text{'}(x) = \begin{cases} 2x.exp(-x^2) \text{ si } x > 0 \\ 0 \text{ si } x < 0 \end{cases} \text{ donc une densit\'e de } Y_2 \text{ est : } f_2(x) = \begin{cases} 2x.exp(-x^2) \text{ si } x \geq 0 \\ 0 \text{ si } x < 0 \end{cases}$$

5. a)
$$\forall x \in \mathbb{R}$$
, $P(M_2 > x) = P((X_1 > x) \cap (X_2 > x)) = P(X_1 > x) \times P(X_2 > x)$ (par indépendance)
= $P(X > x)^2$ (même loi) = $(1 - F_X(x))^2$

Donc
$$\forall x \in \mathbb{R}$$
, $F_{M2}(x) = 1 - P(M_2 > x) = 1 - (1 - F_X(x))^2$ Si $x < 0$ $F_{M2}(x) = 1 - (1 - 0)^2 = 0$ Si $x \ge 0$, $F_{M2}(x) = 1 - (1 - (1 - \exp(-x^2/2)))^2 = 1 - \exp(-x^2/2)^2 = 1 - \exp(-x^2/2)$

Donc $\forall x \in \mathbb{R}$, $F_{M2}(x) = F_{Y2}(x)$ M_2 suit la même loi que Y_2 .

Exercice 4

1) L est symétrique donc diagonalisable. 2) def vpL(lambd):

L=np.array([[2,-1,0,-1,0],[-1,2,-1,0,0],[0,-1,2,-1,0],[-1,0,-1,3,-1],[0,0,0,-1,1]])
r=al.matrix rank(L-lambd*np.eye(5,5))

if r<5:

return True

else:

return False

3) a. $X \in \mathcal{M}_{5,1}(\mathbb{R})$ donc ${}^{t}X \in \mathcal{M}_{1,5}(\mathbb{R})$.

 $L \in \mathcal{M}_5(\mathbb{R})$ donc ${}^tX.L \in \mathcal{M}_{1,5}(\mathbb{R})$ donc ${}^tX.L.X \in \mathcal{M}_1(\mathbb{R})$, c'est-à-dire appartient à \mathbb{R} .

$$= a(2a-b-d) + b(-a+2b-c) + c(-b+2c-d) + d(-a-c+3d-e) + e(-d+e)$$

$$= 2a^2 - ab - ad - ab + 2b^2 - bc - bc + 2c^2 - cd - ad - cd + 3d^2 - de - de + e^2$$

$$=2a^2+2b^2+2c^2+3d^2+e^2-2ab+2ad-2bc-2cs-2de$$

Or
$$(a-b)^2 + (b-c)^2 + (c-d)^2 + (d-a)^2 + (e-d)^2$$

$$= a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 - 2cd + d^2 + d^2 - 2ad + a^2 + e^2 - 2de + d^2$$

$$=2a^2+2b^2+2c^2+3d^2+e^2-2ab+2ad-2bc-2cs-2de$$

Donc
$${}^{t}X.L.X = (a-b)^{2} + (b-c)^{2} + (c-d)^{2} + (d-a)^{2} + (e-d)^{2}$$

b. Si X est un vecteur propre de L associé à la valeur propre λ , LX = λX

Donc
$${}^{t}X.L.X = {}^{t}X.\lambda X = \lambda {}^{t}X.X = \lambda (a \ b \ c \ d \ e) \begin{pmatrix} a \\ b \\ c \\ d \\ e \end{pmatrix} = \lambda (a^{2} + b^{2} + c^{2} + d^{2} + e^{2})$$

On voit que $a^2 + b^2 + c^2 + d^2 + e^2 \ge 0$. Comme X est un vecteur propre, X est non nul, donc une de ses coordonnées au moins est non nulle. Donc $a^2 + b^2 + c^2 + d^2 + e^2 > 0$.

Donc
$$\lambda = \frac{(a-b)^2 + (b-c)^2 + (c-d)^2 + (d-a)^2 + (e-d)^2}{a^2 + b^2 + c^2 + d^2 + e^2}$$
 donc $\lambda \ge 0$, comme quotient de nombres positifs.

Donc toutes les valeurs propres de L sont positives ou nulles.

d. LU=
$$\begin{pmatrix} 2 & -1 & 0 & -1 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ -1 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 LU = 0U et U est non nul, donc 0 est valeur propre de L.

Comme les valeurs propres sont positives et classées dans l'ordre croissant, $\lambda_1 = 0$.

4) a) Si LX = 0 alors ^tX.LX = 0 donc avec les notations précédentes,

$$(a-b)^2 + (b-c)^2 + (c-d)^2 + (d-a)^2 + (e-d)^2 = 0$$

Or une somme de nombres positifs est nulle si et seulement tous les coefficients non nuls.

Donc
$$\begin{cases} (a-b)^2 = 0 \\ (b-c)^2 = 0 \\ (c-d)^2 = 0 \\ (d-a)^2 = 0 \end{cases} \Leftrightarrow \begin{cases} a-b=0 \\ b-c=0 \\ c-d=0 \\ e-d=0 \end{cases} \begin{cases} a=b \\ c=b \\ d=b \\ e=b \end{cases} = bU \text{ donc } X \in Vect(U)$$

Inversement, si $X \in Vect(U)$, il existe un réel α tel que $X = \alpha U$ donc $LX = L(\alpha U) = \alpha(LU) = \alpha 0 = 0$. Donc $LX = 0 \Leftrightarrow X \in Vect(U)$

b. $X \in E_0(L) \Leftrightarrow LX = 0 \Leftrightarrow X \in Vect(U) \ donc \ E_0(M) = Vect(U)$. Donc $E_0(L)$ est de dimension 1. Donc les autres valeurs propres sont strictement positives.

Exercice 5

1) a. A est une matrice triangulaire, donc ses valeurs propres sont ses coefficients diagonaux.

Donc, si a = b, A admet une seule valeur propre : a

b. Supposons que A soit diagonalisable : il existe alors une matrice P inversible telle que $A = PDP^{-1}$, avec

$$D = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = aI_2$$
. Donc $A = P(aI_2)P^{-1} = aPIP^{-1} = aI_2$.

Or $A \neq aI_2$, donc A n'est pas diagonalisable.

2. a. De la même manière, A a pour valeurs propres a et b, qui sont maintenant distincts.

$$b.\ A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad A \begin{pmatrix} 1 \\ b-a \end{pmatrix} = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix} \begin{pmatrix} 1 \\ b-a \end{pmatrix} = \begin{pmatrix} b \\ b(b-a) \end{pmatrix} = b \begin{pmatrix} 1 \\ b-a \end{pmatrix}$$

De plus, les deux vecteurs $\binom{1}{0}$ et $\binom{1}{b-a}$ sont non nuls, donc ce sont des vecteurs propres de A.

c. Comme les deux vecteurs propres sont associés à des valeurs propres distinctes, ils forment une famille libre. (Ou $b - a \ne 0$ donc vecteurs non colinéaires)

De plus dim $(\mathcal{M}_{2,1}(\mathbb{R})) = 2$, donc ils forment une base.

Si on note *C* la base canonique, $P = P_{CB} = \begin{pmatrix} 1 & 1 \\ 0 & b - a \end{pmatrix}$.

d.
$$AP = \begin{pmatrix} a & b \\ 0 & b(b-a) \end{pmatrix}$$
 donc on voit qu'en posant $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, on a $AP = PD$.

En multipliant à droite par P^{-1} , on a donc : $A = PDP^{-1}$.

A est semblable à une matrice diagonale, donc elle est diagonalisable.

Ou : Les deux vecteurs $\binom{1}{0}$ et $\binom{1}{b-a}$ forment une base de vecteurs propres, donc A est diagonalisable. De

plus, d'après la formule de changement de base, $A = PDP^{-1}$, avec $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$.

En multipliant à droite par P, on obtient : AP = PD

3) a. $(X = Y) = \bigcup_{n=1}^{+\infty} ((X = n) \cap (Y = n))$ donc incompatibilité et indépendance,

$$\begin{split} P(X=Y) &= \sum_{n=1}^{+\infty} P(X=n) \\ P(Y=n) &= \sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2} \left(\frac{1}{2}\right)^{n-1} \frac{1}{2} = \frac{1}{4} \sum_{n=1}^{+\infty} \left(\frac{1}{4}\right)^{n-1} = \frac{1}{4} \sum_{n'=0}^{+\infty} \left(\frac{1}{4}\right)^{n'} \text{ (avec } n'=n-1) \\ &= \frac{1}{4} \times \frac{1}{1-\frac{1}{4}} = \frac{1}{4} \times \frac{4}{3} = \frac{1}{3}. \end{split}$$

4. a) D'après les questions 1. et 2., A(X, Y) est diagonalisable si et seulement si X = Y.

Donc P(A(X, Y) diagonalisable) = P(X = Y) = $\frac{1}{3}$.

Exercice 6

1. Il y a N boules au départ. A chaque étape, il reste M boules, dont 1 noire. Dont la probabilité de tirer une noire est 1/M.

La boucle while s'arrête quand on a tiré une noire. x correspond au nombre de tirages effectués.

N =int(input (' Donner un entier naturel non nul '));

x = 1;

M = N; #N boules au départ dans l'urne

while rd.random()>1/M: #1 boule noire, M boules en tout

x=x+1

M = M-1 #tirages sans remise

print(x)

$$2. \ (X=1) = N_1 \ donc \ P(X=1) = \frac{1}{N} \quad (X=2) = B_1 \cap N_2 \quad donc \ P(X=2) = P(B_1) \\ P_{B1}(N_2) = \frac{N-1}{N} \times \frac{1}{N-1} = \frac{1}{N} = \frac{1}{N$$

$$(X = 3) = B_1 \cap B_2 \cap N_3$$
 donc $P(X = 3) = \frac{N-1}{N} \times \frac{N-2}{N-1} \times \frac{1}{N-2} = \frac{1}{N}$

3. $X(\Omega) = \{1, ..., N\}$ (car les tirages sont sans remise).

$$\forall k \in \{1, ..., N\}, (X = k) = B_1 \cap ... \cap B_{k-1} \cap N_k \text{ donc}$$

Au tirage $n^{\circ}k - 1$: on déjà tiré N - (k - 2) = N - k + 2 boules.

Il reste 1 noire et N - k + 1 blanches.

Au tirage $n^{\circ}k$: on a tiré N - k + 1 boules.

$$P(X=k) = \frac{N-1}{N} \times \frac{N-2}{N-1} \times \dots \times \frac{N-k+1}{N-k+2} \times \frac{1}{N-k+1} = \frac{1}{N}. \quad \text{Donc } X \longrightarrow U([[1;N]]).$$

5. Donc $E(X) = \frac{N+1}{2}$. Il faut en moyenne $\frac{N+1}{2}$ tirages pour obtenir la boule noire.

II. Une deuxième expérience aléatoire

1. Pour obtenir au moins une boule noire et au moins une boule blanche, il faut tirer au moins deux boules :

$$T(\Omega) = \{2, 3, ...\} = \mathbb{I}\mathbb{N} \setminus \{0, 1\}.$$

$$2. \ \forall k \geq 2, \ (T=k) = (B_1 \cap \ldots \cap B_{k-1} \cap N_k) \ \cup \ (N_1 \cap \ldots \cap N_{k-1} \cap B_k) \quad (incompatibles)$$

Donc, par indépendance des tirages, $P(T = k) = \left(1 - \frac{1}{N}\right) \times \dots \left(1 - \frac{1}{N}\right) \frac{1}{N} + \frac{1}{N} \times \dots \times \frac{1}{N} \times \left(1 - \frac{1}{N}\right) \times \dots \times \frac{1}{N} \times \dots \times$

$$P(T=\ k) = \left(\frac{N-1}{N}\right)^{k-1} \frac{1}{N} + \left(\frac{1}{N}\right)^{k-1} \frac{N-1}{N}$$

$$3. \sum_{k \geq 2} k.P(T=k) = \sum_{k \geq 2} k \left(\left(\frac{N-1}{N} \right)^{k-1} \frac{1}{N} + \left(\frac{1}{N} \right)^{k-1} \frac{N-1}{N} \right) = \frac{1}{N} \sum_{k \geq 2} k \left(\frac{N-1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{N-1}{N} \sum_{k \geq 2} k \left(\frac{1}{N} \right)^{k-1} + \frac{$$

$$-1 < \frac{N-1}{N} < 1$$
 et $-1 < \frac{1}{N} < 1$ donc les séries convergent absolument.

Donc T admet une espérance et
$$E(T) = \frac{1}{N} \sum_{k=2}^{+\infty} k \left(\frac{N-1}{N}\right)^{k-1} + \frac{N-1}{N} \sum_{k=2}^{+\infty} k \left(\frac{1}{N}\right)^{k-1}$$

$$= \frac{1}{N} \left(\frac{1}{\left(1 - \frac{N-1}{N}\right)^2} - 1 \right) + \ \frac{N-1}{N} \left(\frac{1}{\left(1 - \frac{1}{N}\right)^2} - 1 \right) = \frac{1}{N} \left(N^2 - 1 \right) + \ \frac{N-1}{N} \left(\frac{N^2}{(N-1)^2} - 1 \right)$$

$$=N-\frac{1}{N}+\frac{N}{N-1}-\frac{N-1}{N}=N-1+\frac{N}{N-1}=N+\frac{1}{N-1}$$

4. (a) [U = 1] \cap [T=2] = "on tire deux boules : une blanche, une noire" = $(B_1 \cap N_2) \cup (N_1 \cap B_2)$

Par indépendance,
$$P([U = 1] \cap [T=2]) = \frac{N-1}{N} \times \frac{1}{N} + \frac{1}{N} \times \frac{N-1}{N} = \frac{2(N-1)}{N^2}$$
.

(b) $\forall k \ge 3$, $[U = 1] \cap [T = k]$: on ne tire qu'une blanche, donc k - 1 noires avec $k - 1 \ge 2$.

Donc la blanche est tirée en dernier : $[U=1] \cap [T=k] = N_1 \cap ... \cap N_{k-1} \cap B_k$ par indépendance, $P([U=1] \cap [T=k]) = \left(\frac{1}{N}\right)^{k-1} \frac{N-1}{N}$.

5. Si $j \ge 2$, $[U = j] \cap [T = j+1]$: on tire j blanches avec $j \ge 2$, donc on termine par une noire.

$$[U = j] \cap [T = j+1] = B_1 \cap ... \cap B_j \cap N_{j+1} \text{ donc } P([U = j] \cap [T = j+1]) = \left(\frac{N-1}{N}\right)^j \frac{1}{N}.$$

(b) Si $j \ge 2$ et $k \ne j + 1$, l'événement $[U = j] \cap [T = k]$ est impossible, donc $P([U = j] \cap [T = k]) = 0$.

6.
$$P((U=2) \cap (T=2)) = 0$$
 Or $P((T=2)) \neq 0$ et $P([U=2]) \neq 0$

Donc $P((U = 2) \cap (T = 2)) \neq P(U = 2)P(T = 2)$. Donc U et T ne sont pas indépendantes.

7. $U(\Omega) = \mathbb{N}^*$. D'après la formule des probabilités totales avec $(T = k)_{k \ge 2}$ comme système complet d'événements,

$$\begin{split} &P(U=1) = \sum_{k=2}^{+\infty} P([U=1] \cap [T=k]) = P([U=1] \cap [T=2]) + \sum_{k=3}^{+\infty} P([U=1] \cap [T=k]) \\ &= \frac{2(N-1)}{N^2} + \sum_{k=3}^{+\infty} \left(\frac{1}{N}\right)^{k-1} \frac{N-1}{N} = \frac{2(N-1)}{N^2} + \sum_{k'=0}^{+\infty} \left(\frac{1}{N}\right)^{k'+2k-1} \frac{N-1}{N} \qquad (k'=k-3 \Leftrightarrow k=k'+3) \\ &= \frac{2(N-1)}{N^2} + \frac{N-1}{N^3} \sum_{k'=0}^{+\infty} \left(\frac{1}{N}\right)^{k'} = \frac{2(N-1)}{N^2} + \frac{N-1}{N^3} \frac{1}{1-\frac{1}{N}} = \frac{2(N-1)}{N^2} + \frac{N-1}{N^3} \times \frac{N}{N-1} = \frac{2(N-1)}{N^2} + \frac{1}{N^2} = \frac{2N-1}{N^2} + \frac{N-1}{N^2} = \frac{2N-1}{N^2} = \frac{2N-1}{N^2} + \frac{N-1}{N^2} = \frac{2N-1}{N^2} = \frac{2N-1}{N^$$

$$\forall \ j \geq 2, \ [U=j] = B_1 \cap \ldots \cap B_j \cap N_{j+1} \ \ donc \ P([U=j]) = \left(\frac{N-1}{N}\right)^j \frac{1}{N}.$$