Chapitre 1 : Comparaison de suites, de fonctions

1. Comparaison de suites

1.1 Suites équivalentes / Suite négligeable

Rappels : Croissances comparées

Si
$$\alpha > 0$$
, $\beta > 0$, $q > 1$

$$\lim_{n\to +\infty}\frac{ln(n)^\alpha}{n^\beta}=0$$

$$\lim_{n\to +\infty} \frac{e^{\,\alpha n}}{n^{\beta}} = +\infty \qquad \qquad \lim_{n\to +\infty} \frac{q^n}{n^{\beta}} = +\infty$$

$$\lim_{n \to +\infty} \frac{q^n}{n^{\beta}} = +\infty$$

Introduction:

Considérons la suite $(u_n)_{n\geq 1}$ définie par : $\forall n\geq 1$, $u_n=n-\ln(n)$.

Si on cherche la limite de (u_n), on remarque qu'il s'agit d'une forme indéterminée.

En écrivant : $u_n = n\left(1 - \frac{\ln(n)}{n}\right)$ et en utilisant que $\lim_{n \to +\infty} \frac{\ln(n)}{n} = 0$ (croissance comparée),

on obtient : $\lim_{n \to +\infty} u_n = +\infty$

En quelque sorte "n" l'emporte sur "ln(n)".

Nous allons définir mathématiquement cette notion.

Définitions:

Soient (u_n) et (v_n) deux suites qui ne s'annule pas à partir d'un certain rang.

_ Si $\lim_{n \to +\infty} \frac{\mathbf{u}_n}{\mathbf{v}_n} = 1$, on dit que (\mathbf{u}_n) et (\mathbf{v}_n) sont équivalentes.

On note alors : $\mathbf{u_n} \sim_{+\infty} \mathbf{v_n}$.

 $-\sin\lim_{n\to+\infty}\frac{\mathbf{u}_n}{\mathbf{v}_n}=\mathbf{0}$, on dit que (\mathbf{u}_n) est négligeable devant (\mathbf{v}_n) (ou que (\mathbf{v}_n) est prépondérante devant (\mathbf{u}_n)).

On note alors : $\mathbf{u_n} =_{+\infty} \mathbf{o}(\mathbf{v_n})$. (" $\mathbf{u_n}$ est un petit o de $\mathbf{v_n}$ ")

Exemples:

$$u_n = -2n + 3$$
, $v_n = n^2$

$$\underline{\quad }u_{n}=n^{2}-n\quad v_{n}=n^{2}$$

Remarque : Soit (u_n) , (v_n) et (w_n) 3 suites.

$$_si \ u_n \thicksim_{+} \infty \ v_n \ et \ v_n \thicksim_{+} \infty \ w_n \ alors \ u_n \thicksim_{+} \infty \ w_n$$

$$\underline{\hspace{0.1cm}}$$
 si $u_n =_{+\infty} o(v_n)$ et $v_n =_{+\infty} o(w_n)$ alors $u_n =_{+\infty} o(w_n)$

$$\underline{\hspace{0.1cm}}$$
 si $u_n \sim_{+\infty} v_n$ et $v_n =_{+\infty} o(w_n)$ alors $u_n =_{+\infty} o(w_n)$

1.2 Limites et comparaisons

Propriété:

Soit
$$(u_n)$$
 et (v_n) deux suites.

1) $si\begin{cases} \lim_{n \to +\infty} u_n = 0 \\ \lim_{n \to +\infty} v_n = L \neq 0 \end{cases}$ alors $u_n =_{+\infty} o(v_n)$

2) $si\begin{cases} \lim_{n \to +\infty} u_n = L \in \mathbb{R} \\ \lim_{n \to +\infty} v_n = \infty \end{cases}$ alors $u_n =_{+\infty} o(v_n)$

$$\begin{cases} \lim_{n \to +\infty} v_n = L \\ \lim_{n \to +\infty} v_n = L \end{cases}$$
 alors $u_n \sim_{+\infty} v_n$

$$L \in \mathbb{R} \text{ et } \neq 0$$

Démonstration : évidente d'après les opérations sur les limites

Ex : Comparaison de $u_n = \frac{1}{n}$, $v_n = 1$ et $w_n = n$

Attention, deux suites qui tendent vers 0 ne sont pas forcément équivalentes :

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \quad \lim_{n \to +\infty} \frac{1}{n^2} = 0 \quad \lim_{n \to +\infty} \frac{1/n}{1/n^2} = \lim_{n \to +\infty} n = +\infty \quad donc \ \frac{1}{n} \ et \ \frac{1}{n^2} \ ne \ sont \ pas \ equivalentes \ !$$

Propriété fondamentale :

Soient u et v deux suites.

Si $u_n \sim_{+\infty} v_n$ et si $\lim_{n \to +\infty} v_n = L$ (fini ou infini), alors $\lim_{n \to +\infty} u_n = L$.

Pour déterminer la limite d'une suite, on peut donc chercher un équivalent plus simple.

Exemple : Déterminer $\lim_{n \to +\infty} n^2 - n$

1.3 Exemples classiques

Propriété : Croissances comparées

Soit α , β , a et b des réels strictement positifs.

- 1) si $\alpha < \beta$, $n^{\alpha} = +\infty$ $o(n^{\beta})$
- 2) $\ln^{\alpha}(\mathbf{n}) =_{+\infty} \mathbf{o}(\mathbf{n}^{\beta})$.
- 3) $\forall a > 1$, $n^{\alpha} =_{+\infty} o(e^{\beta n})$, $n^{\alpha} =_{+\infty} o(a^n)$
- 4) si $\mathbf{a} < \mathbf{b}$, $\mathbf{a}^{\mathbf{n}} = + \infty \mathbf{o}(\mathbf{b}^{\mathbf{n}})$

(On peut retenir : « une exponentielle (ou une puissance) l'emporte sur n^{α} , qui l'emporte sur un logarithme »)

Exemples:

$$\ln(n) = o(\sqrt{n}), \sqrt{n} = o(n), n = o(n^2), n^2 = o(2^n), 2^n = o(e^n), \dots$$

Propriété:

Un polynôme en n est équivalent à son monôme non nul de plus haut degré.

Exemple:

$$\lim_{n \to +\infty} -2n^2 + 3n + 5 ?$$

Attention : Les expressions contenant a^n , \sqrt{n} , ln(n), e^n , n !.... ne sont pas des polynômes en n !

Propriété:

Soit
$$(u_n)$$
 une suite. Si $\lim_{n \to +\infty} u_n = 0$ alors :

$$ln(1+u_n) \sim_{+\infty} u_n \qquad \qquad e^{un}-1 \sim_{+\infty} u_n$$

 $D \acute{e}monstration: \lim_{x \, \rightarrow \, 0} \frac{ln(1+x)}{x} = 1 \ donc \ \lim_{n \, \rightarrow \, +\infty} \frac{ln(1+v_n)}{v_n} = 1 \quad donc \ ln(1+v_n) \sim_{+ \, \infty} v_n.$

De même pour $\lim_{x \to 0} \frac{e^x - 1}{x}$.

Exemple : Equivalent simple de $ln(1 - \frac{1}{n^2})$?

Remarque : Soit (u_n) une suite telle que $\lim_{n \to +\infty} u_n = 1$. Alors en écrivant $\ln(u_n) = \ln(1 + (u_n - 1))$, on se ramène au cas ci-dessus.

Ex : Equivalent simple de ln $\left(\frac{\sqrt{n}}{\sqrt{n-3}}\right)$?

1.4 Opérations sur les équivalents

Remarque : Soit (u_n) et (v_n) deux suites et λ un réel non nul.

_ Si
$$u_n = o(v_n)$$
 alors $\lambda u_n =_{+\infty} o(v_n)$ et $u_n =_{+\infty} o(\lambda v_n)$

$$_$$
 Si $u_n \sim_{+\infty} v_n$ alors $\lambda u_n \sim_{+\infty} \lambda v_n$.

Propriété fondamentale : Equivalent d'une somme

Soit u, v, w sont trois suites.

$$Si \left\{ \begin{array}{l} \forall \ n \in {\rm I\! N}, \, u_n = v_n + w_n \\ w_n =_{+\,\infty} o(v_n) \end{array} \right. \ \text{alors } u_n \sim_{+\,\infty} v_n$$

Remarque:

Autrement dit, si $u_n = v_n + o(v_n)$, alors $u_n \sim v_n + o(v_n)$

Exemple : Equivalent de $3n - 2\ln(n)$?

Remarque : Attention, cette propriété est fausse pour un produit !

Par exemple : n.ln(n) n'est pas équivalent à n!

Propriété : Equivalents et produits, quotients, puissances

Soient u, v, w, z des suites et α un réel.

_ Si
$$\mathbf{u}_{\mathbf{n}} \sim_{+\infty} \mathbf{v}_{\mathbf{n}}$$
 et si $\alpha \in \mathbb{R}$, alors $\mathbf{u}_{\mathbf{n}}^{\alpha} \sim_{+\infty} \mathbf{v}_{\mathbf{n}}^{\alpha}$

$$\int u_n w_n \sim_{+\infty} v_n z_n$$

$$-\operatorname{Si} \mathbf{u_n} \sim_{+\infty} \mathbf{v_n} \text{ et } \mathbf{w_n} \sim_{+\infty} \mathbf{z_n} \text{ alors } \left\{ \text{ si } \mathbf{w_n} \text{ et } \mathbf{z_n} \text{ ne s'annulent pas } \frac{\mathbf{u_n}}{\mathbf{w_n}} \sim_{+\infty} \frac{\mathbf{v_n}}{\mathbf{z_n}} \right.$$

Remarque : Attention, ne pas utiliser des règles qui n'existent pas !

$$u_n \sim_{+\infty} v_n \Longrightarrow u_n + w_n \sim_{+\infty} v_n + w_n : Non$$

$$u_n \sim_{+\infty} v_n \Longrightarrow \ln(u_n) \sim_{+\infty} \ln(v_n) : Non$$

$$u_n \sim_{+\infty} v_n \Longrightarrow e^{un} \sim_{+\infty} e^{vn}$$
: Non

Exemple:

Equivalent puis limite de
$$u_n = \frac{(n^2 + 2n - 3)(e^{1/n} - 1)}{\sqrt{n^2 + 1}}$$
 :

[&]quot;Une somme est équivalente à son terme prépondérant"

1.5 Encadrements et équivalents

A l'aide d'un encadrement du type $u_n \le v_n \le w_n$, on peut souvent trouver un équivalent de v_n , en faisant apparaître un quotient qui tend vers 1:

Méthode:

Supposons que \forall $n \in \mathbb{N}$, $u_n \le v_n \le w_n$.

Si $u_n > 0$, l'encadrement devient : $\forall n \in {\rm I\! N}, \ 1 \leq \frac{v_n}{u_n} \leq \frac{w_n}{u_n}.$

 $Si \ de \ plus \ \lim_{n \, \rightarrow \, +\infty} \frac{w_n}{u_n} = 1, \ alors \ par \ encadrement \ \lim_{n \, \rightarrow \, +\infty} \frac{v_n}{u_n} = 1. \ Donc \ v_n \thicksim_{+ \, \infty} u_n.$

 $Ex: Soit \ (v_n) \ une \ suite \ telle \ que \ \forall \ n \geq 1, \ n \leq v_n \leq n + \frac{1}{n}. \ Déterminer \ un \ équivalent \ simple \ de \ (v_n)$

1.6 Cas particulier de u_n^{V_n}

Rappel:

$$\forall a > 0, \forall b \in \mathbb{R}, a^b = e^{b\ln(a)}$$

Pour étudier une expression du type a^b (limite, dérivée, ...), il est généralement nécessaire de passer à cette forme.

Ex: Limite de
$$\left(1 + \frac{1}{n}\right)^n$$
?

2. Comparaisons de fonctions

Dans toute cette partie, x_0 désigne un réel ou $+\infty$, ou $-\infty$.

2.1 Fonction négligeable / Fonctions équivalentes

Définition:

Soient f et g deux fonctions définies et non nulles sur un voisinage de x₀ :

_ Si
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$
, on dit que f est équivalente à g en x_0 . Dans ce cas, on note $f(x) \sim_{x_0} g(x)$.

_ si $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, on dit que f est négligeable devant g (ou que g est prépondérante devant f) au voisinage de x_0 . Dans ce cas, on note $f(x) = x_0$ o(g(x)).

Propriété:

Soient f et g deux fonctions définies sur un voisinage de x₀.

Si
$$f(x) =_{x0} g(x) + o(g(x))$$
 alors $f(x) \sim_{x0} g(x)$

Comme pour les suites, la relation d'équivalence est compatible avec la multiplication, la division et la puissance, mais pas avec la somme et la différence.

Propriété:

Soient f et g deux fonctions définies sur un voisinage de x₀.

Si
$$f(x) \sim_{x_0} g(x)$$
 et si $\lim_{x \to x_0} g(x) = L$ (fini ou infini), alors $\lim_{x \to x_0} f(x) = L$

2.2 Exemples usuels

Propriété:

$$ln(1 + x) \sim_0 x$$
 $e^x - 1 \sim_0 x$

Corollaire

Soit u une fonction définie sur un voisinage de x₀.

Si
$$\lim_{x \to x_0} \mathbf{u}(x) = \mathbf{0}$$
 alors $e^{\mathbf{u}(x)} - \mathbf{1} \sim_{x_0} \mathbf{u}(x)$ et $\ln(1 + \mathbf{u}(x)) \sim_{x_0} \mathbf{u}(x)$.

Exemple : Limite en 0 de
$$\frac{\ln(1-x^2)}{2x^2}$$
 ?

Propriété:

En $+\infty$ et en $-\infty$, un polynôme est équivalent à son monôme non nul de plus haut degré.

En 0, un polynôme est équivalent à son monôme non nul de plus bas degré.

Exemples:

_ Limite en -
$$\infty$$
 de $\frac{2-x^3}{x^2+x+1}$?

_ Equivalent en 0 de
$$x^3 + 3x^2 - 4x$$
?

Propriété (Croissances comparées) :

Soient α et β des réels strictement positifs

1) si
$$\alpha < \beta$$
 alors $x^{\alpha} =_{+\infty} o(x^{\beta})$

2)
$$\mathbf{x} =_{+\infty} \mathbf{o}(\mathbf{e}^{\mathbf{x}})$$
 $\mathbf{ln}(\mathbf{x}) =_{+\infty} \mathbf{o}(\mathbf{x})$

3) De manière générale,
$$x^{\alpha} = +\infty$$
 $o(e^{\beta x})$ $ln^{\alpha}(x) = +\infty$ $o(x^{\beta})$

Exemple:

Limite en
$$+\infty$$
 de $f(x) = x - 2\ln^3(x)$?