Chapitre 11 : Intégration sur un segment – Feuille n°1

Exercice 1

Déterminer une primitive des fonctions suivantes :

a)
$$f(x) = e^{-3x} sur \, \mathbb{R}$$

b)
$$f(x) = \frac{1}{x^3} \text{ sur }]0; +\infty[$$

c)
$$f(x) = (3x + 1)^4 \text{ sur } \mathbb{R}$$

d)
$$f(x) = \frac{2x+1}{x^2+x} sur \]0; +\infty[$$
 e) $f(x) = \frac{4}{3-2x} sur \]\frac{3}{2}; +\infty[$ f) $f(x) = \frac{1}{(2x+1)^3} sur \]-\frac{1}{2}; +\infty[$.

$$f(x) = \frac{4}{3-2x} \text{ sur }]\frac{3}{2};$$

f)
$$f(x) = \frac{1}{(2x+1)^3} sur \left[-\frac{1}{2} + \infty \right]$$

Exercice 2

Calculer les intégrales :

$$I = \int_1^2 \frac{1}{x^5} \, dx$$

$$J = \int_1^3 \frac{1}{x\sqrt{x}} dx$$

$$J = \int_{1}^{3} \frac{1}{x\sqrt{x}} dx \qquad K = \int_{a}^{b} (x - a) dx \text{ (a, b r\'eels quelconques)}$$

$$L = \int_0^1 \sqrt{5 - 2x} \ dx$$

Exercice 3

Soit f la fonction définie sur [-1;1] par :
$$f(x) = \begin{cases} e^{-x} \text{ si } -1 \le x \le 0 \\ \sqrt{x} \text{ si } 0 < x \le 1 \end{cases}$$
. Calculer $I = \int_{-1}^{1} f(x) dx$.

Exercice 4

Déterminer I =
$$\int_0^2 |x - 1| dx$$
.

Exercice 5 (En plus)

Déterminer I =
$$\int_2^3 \frac{x}{(x-1)^2} dx$$

Exercice 6

Calculer les intégrales :
$$I = \int_0^1 x \cdot e^{-2x} dx$$

$$J = \int_1^2 \frac{\ln(x)}{x^2} dx.$$

Exercice 7

1) a) Déterminer 2 réels a et b tels que :
$$\forall x \in]0; +\infty[, \frac{1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1}]$$

b) Calculer l'intégrale
$$I=\int_0^1 \frac{dx}{e^x+\ 1}$$
 à l'aide du changement de variable $v=e^x$.

2) A l'aide d'un changement de variable affine, calculer l'intégrale
$$J = \int_1^2 \frac{x^2}{1-2x} dx$$

Exercice 8 (En plus)

On pose
$$J = \int_0^1 \frac{e^t \cdot \ln(1 + e^t)}{1 + e^t} dt$$
. A l'aide du changement de variable $u = 1 + e^t$, déterminer la valeur de J.

Exercice 9

On note, pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 (1-x)^n e^{-2x} dx$.

1) Montrer que
$$\forall \ n \in {\rm I\! N}, \ 0 \leq I_n \leq \frac{1}{n+1}.$$
 En déduire $\lim_{n \to +\infty} I_n.$

2) Etudier les variations de la suite
$$(I_n)_{n \in IN}$$

3) a) Etablir que :
$$\forall n \in \mathbb{N}^*$$
, $2I_{n+1} = 1 - (n+1)I_n$.

b) Déduire la limite de n.
$$I_n$$
 lorsque n tend vers $+\infty$.

c) En déduire un équivalent de
$$\hat{I}_n$$
 en $+\infty$.