Chapitre 14 : Développements limités

1. Notion de développement limité

1.1 Développement limité en 0

Rappels et compléments :

Soit f, g et h des fonctions définies sur un voisinage de 0. Alors :

$$-f(x) =_0 o(g(x)) \Leftrightarrow \lim_{x \to 0} \frac{f(x)}{g(x)} = 0$$
 En particulier : $f(x) =_0 o(1) \Leftrightarrow \lim_{x \to 0} f(x) = 0$.

$$f(x) =_0 o(g(x)) \Leftrightarrow f(x) =_0 o(\lambda g(x)) \text{ (si } \lambda \neq 0) \qquad \text{"si } \lambda \neq 0, \text{ o}(\lambda.g(x)) = o(g(x)) \text{"}$$

$$\Leftrightarrow xf(x) =_0 o(xg(x))$$

$$f(x) \qquad (g(x))$$

$$\Leftrightarrow \frac{f(x)}{x} =_0 o\left(\frac{g(x)}{x}\right)$$

_ si
$$f(x) =_0 o(h(x))$$
 et $g(x) =_0 o(h(x))$ alors $f(x) + g(x) =_0 o(h(x))$ et $f(x) - g(x) =_0 o(h(x))$ " $o(g(x)) + o(g(x)) = o(g(x))$ o $(g(x)) - o(g(x)) = o(g(x))$

$$x =_0 o(1), x^2 =_0 o(x), x^3 =_0 o(x^2), ...$$

_ en 0, un polynôme est équivalent à son monôme non nul de plus bas degré.

Définition:

Soit f une fonction définie au voisinage de 0.

On dit que f possède un **développement limité d'ordre 1 en 0** s'il existe des réels a₀, a₁ tels que :

$$f(x) = 0$$
 $a_0 + a_1x + o(x)$.

On dit que f possède un développement limité d'ordre 2 en 0 s'il existe des réels a₀, a₁, a₂ tels que :

$$f(x) = 0$$
 $a_0 + a_1x + a_2x^2 + o(x^2)$.

Remarques:

$$f(x) = 0$$
 $a_0 + a_1x + o(x)$ signifie que $f(x) = a_0 + a_1x + g(x)$, avec $g(x) = 0$ $o(x)$

$$(f(x) = a_0 + a_1x + a_2x^2 + g(x) \text{ avec } g(x) =_0 o(x^2) \text{ pour un d.l. d'ordre 2.}$$

On peut trouver également comme définition d'un d.l. d'ordre 1 (d'ordre 2) :

$$f(x) =_0 a_0 + a_1 x + x. \varepsilon(x) \text{ avec } \lim_{x \to 0} \varepsilon(x) = 0$$

$$f(x) =_0 a_0 + a_1 x + a_2 x^2 + x^2 \varepsilon(x) \text{ avec } \lim_{x \to 0} \varepsilon(x) = 0$$

En effet : pour un d.l. d'ordre 1 : posons
$$g(x) = x \cdot \varepsilon(x)$$
 $g(x) = o(x) \Leftrightarrow \lim_{x \to 0} \frac{g(x)}{x} = 0 \Leftrightarrow \lim_{x \to 0} \varepsilon(x) = 0.$

_ la partie polynomiale $(a_0 + a_1x + a_2x^2)$ est appelée **partie régulière** du développement limité.

Elle donne une bonne approximation de la valeur de f au voisinage de 0.

_ Si f admet un développement limité en 0, alors le développement limité est unique.

Propriété:

Soit f une fonction définie au voisinage de 0.

Si f admet un développement limité d'ordre 2 en 0 : $f(x) =_0 a_0 + a_1 x + a_2 x^2 + o(x^2)$, alors f admet un développement limité d'ordre 1 en 0, qui est : $f(x) =_0 a_0 + a_1 x + o(x)$.

$$(\text{car } a_2 x^2 =_0 o(x) \text{ et } x^2 =_0 o(x))$$

Exemple : On sait que $\forall x \in \mathbb{R}, (1+x)^3 = 1 + 3x + 3x^2 + x^3$.

En déduire le développement limité d'ordre 1 et d'ordre 2 de $(1 + x)^3$ en 0.

$$3x^2 + x^3 =_0 o(x)$$
 donc $(1 + x)^3 = 1 + 3x + o(x)$ (d.1. d'ordre 1) $x^3 = o(x^2)$ donc $(1 + x)^3 = 1 + 3x + 3x^2 + o(x^2)$ (d.1. d'ordre 2).

Autres exemples (justifiés plus tard) :
$$e^x =_0 1 + x + \frac{x^2}{2} + o(x^2)$$
, $ln(1 + x) =_0 x - \frac{x^2}{2} + o(x^2)$, ...

1

1.2 Développement limité en x₀

Remarque : En $x_0 \in \mathbb{R}$: $x - x_0 = o(1)$, $(x - x_0)^2 =_{x_0} o(x - x_0)$.

Définition:

Soit f une fonction définie au voisinage d'un réel x₀.

On dit que f possède un développement limité d'ordre 1 en x₀ s'il existe des réels a₀, a₁ tels que

$$f(x) =_{x_0} a_0 + a_1(x - x_0) + o(x - x_0).$$

On dit que f possède un développement limité d'ordre 2 en x₀ s'il existe des réels a₀, a₁, a₂ tels que

$$f(x) = x_0 a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + o((x - x_0)^2)$$
.

Remarque importante:

Pour passer d'un développement limité. en x_0 à un développement limité en 0, il suffit de poser $\mathbf{x} = \mathbf{x_0} + \mathbf{h}$ (c'est-à-dire $\mathbf{h} = \mathbf{x} - \mathbf{x_0}$)

Ex : développement limité d'ordre 2 en 1 de $f(x) = x^3$:

Avec
$$x = 1 + h$$
: $x^3 = (1 + h)^3 = 0$ $1 + 3h + 3h^2 + o(h^2)$
 $x^3 = 0$ $1 + 3(x - x_0) + 3(x - x_0)^2 + o(x - x_0)^2$

1.3 Développement limité d'une fonction de classe C¹, de classe C²

Propriété: Formule de Taylor-Young

Soit f une fonction définie sur un intervalle I.

_ si f est de classe C¹ sur I, alors $\forall x_0 \in I$, $f(x) =_{x_0} f(x_0) + f'(x_0) \times (x - x_0) + o(x - x_0)$

si f est de classe \mathbb{C}^2 sur I, alors $\forall x_0 \in \mathbb{I}$,

$$f(x) =_{x0} f(x_0) + f'(x_0) \times (x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + o((x - x_0)^2)$$

Remarques:

_ si f est dérivable en x_0 , l'équation de la tangente est $y = f'(x_0)(x - x_0) + f(x_0)$.

La tangente est une "bonne approximation" de la courbe au voisinage du point.

_ en particulier en 0, la
$$2^{\text{ème}}$$
 formule devient : $f(x) =_0 f(0) + x f'(0) + \frac{x^2}{2} f''(0) + o(x^2)$.

Exemple : Soit f(x) = ln(x).

Déterminer le développement limité d'ordre 2 au voisinage de 2 :

f est de classe C^2 sur $]0; +\infty[$.

$$\forall x > 0, f'(x) = \frac{1}{x} f''(x) = -\frac{1}{x^2}$$

D'après la formule de Taylor-Young : $f(x) =_2 f(2) + (x-2)f'(2) + \frac{(x-2)^2}{2}f''(2) + o((x-2)^2)$

$$f(2) = \ln(2)$$
 $f'(2) = \frac{1}{2}$ $f''(2) = -\frac{1}{4}$

$$\ln(x) =_2 \ln(2) + \frac{1}{2}(x-2) - \frac{(x-2)^2}{8} + o((x-2)^2)$$

2. Développements limités usuels et opérations

2.1 Développements limités usuels

Propriété : A connaitre :

$$e^{x} =_{0} 1 + x + \frac{x^{2}}{2} + o(x^{2}) \qquad \frac{1}{1 - x} =_{0} 1 + x + x^{2} + o(x^{2})$$

$$\ln(1 + x) =_{0} x - \frac{x^{2}}{2} + o(x^{2}) \qquad \forall \alpha \in \mathbb{R}, (1 + x)^{\alpha} =_{0} 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2} x^{2} + o(x^{2})$$

Démonstration:

Formule de Taylor-Young à l'ordre 2 en 0 avec les fonctions :

$$\begin{split} f(x) &= e^x \quad (\text{de classe } C^\infty \text{ sur } I\!\!R) \ f'(x) = e^x \qquad f''(x) = e^x \qquad f(0) = 1 \qquad f'(0) = 1 \qquad f''(0) = 1 \\ f(x) &= \frac{1}{1-x} \quad (\text{de classe } C^\infty \text{ sur }]\text{-} \ \infty; 1[) \qquad f'(x) = \frac{1}{(1-x)^2} \qquad f''(x) = -\frac{-2(1-x)}{(1-x)^4} = \frac{2}{(1-x)^3} \\ f(0) &= 1 \qquad f''(0) = 1 \qquad f''(0) = 2 \\ f(x) &= (1+x)^{\alpha} \ (= e^{\alpha \ln(1+x)}) \quad f \text{ est de classe } C^\infty \text{ sur }]\text{-}1; + \infty[\\ f'(x) &= \alpha(1+x)^{\alpha-1} \quad f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2} \\ f(0) &= 1 \qquad f''(0) = \alpha \qquad f'''(0) = \alpha(\alpha-1) \end{split}$$

Remarques:

_ on sait que
$$\forall \ x \in \mathbb{R}, \ e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \dots$$

$$\forall x \in]-1;1[, \frac{1}{1-x} = \sum_{k=0}^{+\infty} x^k = 1 + x + x^2 + \dots$$
 on trouve une grande analogie entre les formules

_ Soit p ∈ **I**N. D'après la formule du binôme de Newton,

$$\begin{split} (1+x)^p &= \sum_{k=0}^p \binom{p}{k} 1^k x^k = \ \binom{p}{0} + \binom{p}{1} x + \binom{p}{2} x^2 + \ \dots \\ &= 1 + px + \frac{p!}{2!(p-2)!} \ x^2 + \dots \\ &= 1 + px + \frac{p(p-1)}{2} \ x^2 + \dots \end{split}$$

On retrouve les coefficients ci-dessus.

Exemples:

1) Déterminer le développement limité d'ordre 2 en 0 de ln(1 + 3x):

$$\lim_{x \to 0} 3x = 0 \text{ et } \ln(1+X) =_0 X - \frac{X^2}{2} + o(X^2) \quad \text{donc } \ln(1+3x) =_0 3x - \frac{(3x)^2}{2} + o((3x)^2)$$

$$\ln(1+3x) =_0 3x - \frac{9x^2}{2} + o(x^2).$$

2) Déterminer le développement limité à l'ordre 2 en 0 de $\sqrt{1+x}$:

$$\sqrt{1+x} =_0 (1+x)^{1/2} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2}x^2 + o(x^2) = 1 + \frac{1}{2}x + \frac{-\frac{1}{4}}{2}x^2 + o(x^2)$$
$$= 1 + \frac{1}{2}x - \frac{1}{8}x^2 + o(x^2).$$

3) Déterminer le développement limité en 2 de $f(x) = \sqrt{x}$?

$$\begin{split} x &= 2 + h \qquad f(2 + h) = \sqrt{2 + h} = \sqrt{2} \sqrt{1 + \frac{h}{2}} =_0 \sqrt{2} \left(1 + \frac{1}{2} \left(\frac{h}{2} \right) - \frac{1}{8} \left(\frac{h}{2} \right)^2 + o \left(\left(\frac{h}{2} \right)^2 \right) \right) \\ &=_0 \sqrt{2} + \frac{\sqrt{2}}{4} h - \frac{\sqrt{2}}{32} h^2 + o(h^2) \\ f(x) &=_2 \sqrt{2} + \frac{\sqrt{2}}{4} (x - 2) - \frac{\sqrt{2}}{32} (x - 2)^2 + o((x - 2)^2) \end{split}$$

2.2 Développements limités et opérations

Propriété:

Soit f et g deux fonctions définies sur un voisinage de 0 et $\lambda \in \mathbb{R}$. $f(x) =_0 a_0 + a_1 x + a_2 x^2 + o(x^2)$ On suppose que : $g(x) =_0 b_0 + b_1 x + b_2 x^2 + o(x^2)$ Alore $\lambda f(x) = 0$ $\lambda a_0 + \lambda a_1 x + \lambda a_2 x^2 + o(x^2)$ $\mathbf{x.f}(\mathbf{x}) = \mathbf{0} \ \mathbf{a_0}\mathbf{x} + \mathbf{a_1}\mathbf{x}^2 + \mathbf{a_2}\mathbf{x}^3 + \mathbf{o}(\mathbf{x}^3) = \mathbf{a_0}\mathbf{x} + \mathbf{a_1}\mathbf{x}^2 + \mathbf{o}(\mathbf{x}^2)$ $\frac{f(x)}{x} = 0 \frac{a_0}{x} + a_1 + a_2 x + o(x)$ $\mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x}) = (\mathbf{a}_0 + \mathbf{b}_0) + (\mathbf{a}_1 + \mathbf{b}_1)\mathbf{x} + (\mathbf{a}_2 + \mathbf{b}_2)\mathbf{x}^2 + \mathbf{o}(\mathbf{x}^2)$ $f(x) - g(x) = (a_0 - b_0) + (a_1 - b_1)x + (a_2 - b_2)x^2 + o(x^2)$

Exemple:

Développement limité en 0 de
$$xe^x - \ln(1+x)$$
?

$$xe^x = x\left(1 + x + \frac{x^2}{2} + o(x^2)\right) = x + x^2 + \frac{x^3}{2} + o(x^3) = x + x^2 + o(x^2)$$

$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2) \qquad xe^x - \ln(1+x) = x + x^2 - \left(x - \frac{x^2}{2}\right) + o(x^2) = \frac{3x^2}{2} + o(x^2).$$

3. Applications des développements limités

Propriété:

Soit f une fonction définie au voisinage d'un réel x₀.

Si f admet un développement limité d'ordre 1 ou 2 en x₀, alors **f est équivalente au monôme non nul de** plus bas degré de son développement limité (s'il y en a un)

Ex:

Limite de
$$\frac{e^x - 1 - x}{x^2}$$
 en 0 ?
$$e^x = 1 + x + \frac{x^2}{2} + o(x^2)$$

$$e^x - 1 - x =_0 \frac{x^2}{2} + o(x^2) \quad donc \ e^x - 1 - x \sim_0 \frac{x^2}{2}. \quad \frac{e^x - 1 - x}{x^2} \sim_{+\infty} \frac{1}{2} \quad \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}$$

Propriété:

Soit f une fonction définie au voisinage d'un réel x_0 (x_0 compris).

_ Si f admet un développement limité d'ordre 1 en x₀ :

 $f(x) = a_0 + a_1(x - x_0) + o(x - x_0)$ alors f est dérivable en x_0 , $f'(x_0) = a_1$, et l'équation de la tangente en x_0 est $y = a_0 + a_1(x - x_0)$.

_ Si
$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + o((x - x_0)^2)$$

 $(f(x) - (a_0 + a_1(x - x_0)) = a_2(x - x_0)^2 + o((x - x_0)^2))$

- _ si a₂ > 0 la courbe est située localement au-dessus de sa tangente
- $_{\rm si}$ a₂ < 0 la courbe est située localement en dessous de sa tangente

Exemple:

A l'aide d'un développement limité, montrer que la fonction exp est dérivable en 0, déterminer sa tangente en 0, et la position de la courbe par rapport à la tangente.

On sait que
$$e^x = 0 + 1 + x + \frac{x^2}{2} + o(x^2)$$

donc la fonction exp est dérivable en 0, l'équation de la tangente est
$$y=1+x$$
. $e^x-(1+x)=\frac{x^2}{2}+o\left(\frac{x^2}{2}\right) \quad \frac{x^2}{2}\geq 0$ la courbe est localement au-dessus de sa tangente.

Remarque pour les suites :

 $\lim_{n \to \infty} \frac{1}{n} = 0$, donc les résultats sur les d.l. en 0 peuvent être utiles pour trouver des approximations sur les suites, appelées développements asymptotiques.

Exemple:

Déterminer un développement asymptotique de $e^{1/n}$ en $+\infty$:

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \text{ et } e^x =_0 1 + x + \frac{x^2}{2} + o(x^2) \text{ et } \lim_{n \to +\infty} \frac{1}{n} = 0 \text{ donc } e^{1/n} =_{+\infty} 1 + \frac{1}{n} + \frac{1}{n^2} + o\bigg(\frac{1}{n^2}\bigg).$$