Chapitre 14: Développements limités – Exercices niveau 2

Exercice 1

Déterminer un équivalent de $(e + x)^e - e^{e+x}$ au voisinage de 0.

Exercice 2

La série
$$\sum_{n \ge 1} \left(\frac{1}{n} - \ln \left(1 + \frac{1}{n} \right) \right)$$
 est-elle convergente ?

Exercice 3 - Méthode de la partie principale

On admet le résultat suivant : (Théorème de Césaro)

Si une suite $(u_n)_{n \ge 1}$ converge vers un réel L alors la suite $\frac{u_0 + ... + u_{n-1}}{n}$ converge aussi vers L.

Soit f une fonction continue sur **R**.

On suppose qu'il existe $\alpha > 0$ tel que $f(x) =_0 x - \alpha x^2 + o(x^2)$.

Soit (u_n) une suite définie par : $\left\{ \begin{array}{l} u_0 > 0 \\ \forall n \in {\rm I\! N}, \, u_{n+1} = f(u_n) \end{array} \right.$

On suppose que $\forall n \in {\rm I\! N}, \, u_n > 0$ et que $\lim_{n \, \to \, +\infty} \! u_n = 0.$

Pour tout $n \,\in\, {\rm I\! N},$ on pose $v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n}.$

- 1) a) Montrer que $\lim_{n \to +\infty} v_n = \alpha$
- b) En déduire $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} v_k$.
- 2) a) Montrer que $\sum\limits_{k=0}^{n-1}v_k \sim_{+\infty} \frac{1}{u_n}$
- b) En déduire que $u_n \sim_{+\infty} \frac{1}{\alpha n}$