Chapitre 20: Convergence et approximations – Feuille n°1

Exercice 1

On désigne par n un entier naturel supérieur ou égal à 2 et on considère n variables aléatoires $X_1, ..., X_n$ indépendantes et suivant la loi géométrique de paramètre p, avec 0 .

On note q = 1 - p. On pose enfin $I_n = Inf(X_1, ..., X_n)$ et $S_n = Sup(X_1, ..., X_n)$.

- 1. Pour $k \in \mathbb{N}$, rappeler l'expression de $P(X_1 > k)$.
- 2. a) Montrer que $\forall k \in \mathbb{N}, P(I_n > k) = q^{kn}$.
- b) En déduire que I_n suit la loi géométrique de paramètre $1 q^n$.
- 3. Déterminer la loi de S_n.

Exercice 2

On considère une suite de variables aléatoires $(X_n)_{n \in \mathbb{N}^*}$ indépendantes suivant toutes une loi de Bernoulli de paramètre p (avec 0).

On pose, pour tout $k \in \mathbb{N}^*$, $Y_k = X_k X_{k+1}$, et pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n Y_k$.

- 1) Soit $k \in \mathbb{N}^*$. Déterminer $E(X_k)$ et $E(X_k^2)$.
- 2) Pour tout $k \in \mathbb{N}^*$, déterminer $E(Y_k)$ et $V(Y_k)$.
- 3) a) Soit $i \ge 1$. Déterminer $E(Y_i Y_{i+1})$, puis la covariance du couple (Y_i, Y_{i+1}) .
- b) Soit i et j tels que j > i + 1. Déterminer $cov(Y_i, Y_j)$.
- 4) Soit $n \in \mathbb{N}^*$. Déterminer l'espérance et la variance de S_n .

Exercice 3

Soit X une variable aléatoire à valeurs dans \mathbb{N} , d'espérance m > 0.

Montrer que $P(X \ge 2m) \le \frac{1}{2}$.

Exercice 4

On dispose d'une pièce équilibrée. Soit $n \ge 1$. On lance n fois cette pièce, et on note X le nombre de piles obtenus et F la fréquence d'apparition de pile.

- 1) Déterminer E(X), V(X), et en déduire E(F), V(F).
- 2) Montrer que $\forall \ \epsilon > 0, \ P\left(\left|F \frac{1}{2}\right| \ge \epsilon\right) \le \frac{1}{4n\epsilon^2}$
- 3) Déterminer un rang n à partir duquel on peut affirmer avec un risque d'erreur inférieur à 5% que la fréquence d'apparition diffère de $\frac{1}{2}$ d'au plus 0,01.

Exercice 5

1) Soit X une VAR qui suit la loi normale $\mathcal{N}(0,1)$. A l'aide de l'inégalité de Bienaymé-Tchebychev, montrer que : $\forall \ x > 0, \ \Phi(x) - \Phi(-x) \geq 1 - \frac{1}{x^2}$.

2) En déduire que $\forall \ x>0, \ \int_0^x e^{-t^2/2} dt \ge \sqrt{\frac{\pi}{2}} \left(1-\frac{1}{x^2}\right)$

ECG2 : Année 2024-2025