Chapitre 6: VAR discrètes – Exercices niveau 2

Exercice 1

Soit X une variable aléatoire telle que $X(\Omega)$ est fini et telle que V(X) = 0.

Montrer que X est une variable certaine.

(On pourra supposer que $X(\Omega) = \{x_i, i \in I\}$ et utiliser la définition de la variance)

Exercice 2 – Fonction génératrice d'une variable finie

Soit X une variable aléatoire telle que $X(\Omega) \subset \{0, ..., n\}$.

1. On appelle fonction génératrice de X la fonction, définie pour tout réel t, par $G(t) = E(t^X)$.

Exprimer G(t) à l'aide d'une somme.

- 2. a. Calculer G(1).
- b) Montrer que G'(1) = E(X).
- c) Exprimer V(X) en fonction de G''(1) et de G'(1).
- 3. a) Pour tout j de $\{0, ..., n\}$, calculer $G^{(j)}(t)$.
- b) A l'aide de $G^{(j)}(0)$, montrer que la loi de X est entièrement déterminée par G (la seule connaissance de G permet de retrouver la loi de X, (d'où le nom de "fonction génératrice").
- 4. Exemple : Soit $X \longrightarrow \mathcal{B}(n,p)$ $(n \ge 1, p \in]0;1[$. Montrer que $G(t) = (1-p+pt)^n$.

Exercice 3 – Fonction génératrice d'une variable discrète

Soit X une variable aléatoire telle que $X(\Omega) \subset \mathbb{N}$.

1. Montrer que $\forall t \in [-1;1], Y = t^X$ admet une espérance.

On appelle fonction génératrice ce X la fonction définie sur [-1;1] par : $G(t) = E(t^{X})$.

- 2. Exemples:
- a) Soit $p \in [0,1]$ et $X \longrightarrow G(p)$. Déterminer la fonction génératrice de X.
- b) Soit $\lambda \in \mathbb{R}$ et $X \longrightarrow \mathcal{P}(\lambda)$. Déterminer la fonction génératrice de X.

Exercice 4 : Loi binomiale négative

Soit $p \in]0;1[$ et $n \in \mathbb{N}^*$. On pose q = 1 - p.

On considère une épreuve de Bernoulli de succès de probabilité p. On répète cette épreuve de manière indépendante jusqu'à obtenir un n^{éme} succès. On note alors X la variable aléatoire égale au nombre d'échecs avant ce n-ème succès.

- 1) Montrer que $\forall k \in \mathbb{N}$, $P(X = k) = {k+n-1 \choose k} p^n q^k$.
- 2) Notation : par analogie avec les coefficients binomiaux, on convient de définir :

$$\binom{-n}{k} = \frac{(-n)(-n-1)....(-n-k+1)}{k!}.$$

Montrer qu'on a alors : $\forall k \in \mathbb{N}$, $P(X = k) = {-n \choose k} p^n (-q)^k$.

On admet (formule du binôme négatif) que

$$\forall x \in \mathbb{R} \text{ tel que } |x| < 1, \ \forall r \in \mathbb{N}, \frac{1}{(1-x)^{r+1}} = \sum_{k=r}^{+\infty} {k \choose r} x^{k-r}.$$

3) a) Montrer que
$$\forall i, j \in \mathbb{N}^*$$
 avec $i \leq j, i \times \binom{j}{i} = (j-i+1) \times \binom{j}{j-i+1}$

b) Montrer que X admet une espérance et que
$$E(X) = \frac{nq}{p}$$
.