Chapitre 8: Espaces vectoriels – Exercices niveau 2

Exercice 1

Soit \mathcal{F} l'ensemble des fonctions définie sur $]0; +\infty[$.

Montrer que les fonctions f(x) = x, $g(x) = x^2$ et $h(x) = \ln(x)$ forment une famille libre de \mathcal{F} .

Remarque : Si une fonction est nulle, alors elle est nulle en tout point, sa dérivée est nulle, ses limites sont nulles, ...

Exercice 2 (d'après HEC 2015)

Soit $n \in \mathbb{N}^*$. On note E_n le sous-espace vectoriel de $\mathbb{R}[X]$ constitué des polynômes de degré inférieur ou égal à n-1 et F_n le sous-espace vectoriel de $\mathbb{R}[X]$ engendré par $X, X^2, ..., X^n$.

- 1. Vérifier que les polynômes $P \in \mathbb{R}[X]$ vérifiant pour tout $x \in \mathbb{R}$, P(x + 1) = P(x) sont les polynômes constants.
- 2. Préciser les dimensions respectives de E_n et F_n.
- 3. Pour tout $P \in F_n$, on note Q le polynôme tel que : $\forall x \in \mathbb{R}$, Q(x) = P(x+1) P(x).
- a) Vérifier que $Q \in E_n$. Quelle relation existe-t-il entre les degrés de P et de Q?
- b) Soit Δ l'application de F_n dans E_n qui à tout $P \in F_n$ associe $Q = \Delta(P)$ où

$$\forall x \in \mathbb{R}, Q(x) = P(x+1) - P(x).$$

Déterminer un polynôme P vérifiant $\Delta(P) = X^3$.

En déduire la valeur des sommes $\sum_{k=1}^{n} k^3$ et $\sum_{k=0}^{n-1} (2k+1)^3$.

Exercice 3 (Oral HEC) Soit t un nombre réel et A(t) la matrice A(t) =
$$\begin{pmatrix} 1-t & -t & 0 \\ -t & 1-t & 0 \\ -t & t & 1-2t \end{pmatrix}.$$

On note \mathcal{M} l'ensemble de ces matrices lorsque t décrit \mathbb{R} .

- 1) Montrer que \mathcal{M} est stable par produit matriciel
- 2) Déterminer les valeurs de t pour lesquelles A(t) est inversible. Montrer que, dans ce cas, $A(t)^{-1}$ appartient encore à \mathcal{M} .
- 3) Résoudre l'équation $X^2 = A\left(-\frac{3}{2}\right)$, d'inconnue $X \in \mathcal{M}$.
- 4) Soit C = A(-1). Déterminer C^n pour n entier naturel.