Chapitre 9 : Applications linéaires – Feuille n°3

Exercice 1

Reprenons l'endomorphisme f de l'exercice 7 de la feuille n°1 : $f \begin{cases} \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \\ (x; y) \longmapsto (2x - 4y; x - 3y) \end{cases}$

On rappelle que B est la base canonique de \mathbb{R}^2 , C la base (u₁, u₂) avec u₁ = (4;1) et u₂ = (1;1).

On rappelle que
$$A = M_B(f) = \begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix}$$
 $A' = M_C(f) = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$.

- 1) f est-elle un automorphisme ? Si oui, déterminer M_C(f⁻¹).
- 2) Montrer que (X 1)(X + 2) est un polynôme annulateur de A'. En déduire un polynôme annulateur de A.
- 3) Quelle relation relie les matrices A et A'?

Exercice 2

Reprenons l'exercice 1 de la feuille 2. $f: \left\{ \begin{matrix} \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X] \\ P \longmapsto (X-1)P' - P \end{matrix} \right.$

On rappelle que \mathcal{B} est la base canonique de $\mathbb{R}_2[X]$, qu'avec $P_0 = 1$, $P_1 = X - 1$ et $P_2 = (X - 1)^2$, la famille $C = (P_0, P_1, P_2)$ est une base $\mathbb{R}_2[X]$, et enfin que :

$$A = M_{\mathscr{B}}(f) = \begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix} \quad D = M_{\mathcal{C}}(f) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1) f est-elle un automorphisme?
- 2) a) Montrer que $f^3 = f$.
- b) En déduire un polynôme annulateur de A.
- 3) Quelle égalité relie les matrices A et D?

Exercice 3

Partie A

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique \mathcal{B} est $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 4 \end{pmatrix}$.

On considère les vecteurs $u_1 = (1;0;0)$, $u_2 = (1;-1;0)$, $u_3 = (1;1;2)$.

- 1) f est-il un automorphisme?
- 2) Montrer que la famille $C = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 3) Soit P la matrice de passage de \mathcal{B} à \mathcal{C} . Montrer que $P^{-1} = \frac{1}{2} \begin{pmatrix} 2 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.
- 4) Déterminer la matrice D de f dans la base C.
- 5) Quelle est la relation entre A et D?

Partie B

- 1) Pour $n \in \mathbb{N}^*$, déterminer l'expression de A^n en fonction de n.
- 2) On cherche à résoudre l'équation AM = MA, d'inconnue $M \in \mathcal{M}_3(\mathbb{R})$.
- a) Montrer que $AM = MA \Leftrightarrow D(P^{-1}MP) = (P^{-1}MP)D$
- b) Résoudre l'équation DN = ND, d'inconnue N $\in \mathcal{M}_3(\mathbb{R})$.
- c) En déduire les solutions de l'équation AM = MA. (on déterminera une base de l'ensemble des solutions).
- 3) a) Déterminer un endomorphisme g tel que $g^2 = f$. Pour cela, on cherchera sa matrice D' dans la base C, puis sa matrice A' dans la base B. (on choisira une matrice D' avec des coefficients positifs).
- b) Montrer que $g \circ (g id_{\mathbb{R}}^3) \circ (g 2 id_{\mathbb{R}}^3) = 0$.