ECG2 : Soutien Vendredi 17/01/25 Intégrales impropres / Valeurs propres d'une matrice

Exercice 1

λ désigne un réel strictement positif.

On note f la fonction définie sur \mathbb{R} par : $\begin{cases} f(x) = 0 \text{ si } x < 0 \\ f(x) = \lambda exp(-\lambda x) \text{ si } x \ge 0 \end{cases}$

- 1. Montrer que l'intégrale $\int_{-\infty}^{+\infty} f(x) dx$ est convergente et que $\int_{-\infty}^{+\infty} f(x) dx = 1$.
- 2. a) Montrer que les intégrales $E_{\lambda} = \int_{-\infty}^{+\infty} x \cdot f(x) dx$ et $F_{\lambda} = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx$ sont bien définies.
- b) Déterminer les valeurs de E_{λ} et F_{λ} .
- c) Montrer que l'intégrale $\int_{-\infty}^{+\infty} \lambda |x| \exp(-\lambda |x|) dx$ converge et déterminer sa valeur
- 3. a) Soit G et H les fonctions définies sur \mathbb{R} par : $G(x) = \int_{-\infty}^{x} f(t)dt$ et $H(x) = \int_{x}^{+\infty} f(t)dt$.
- a) Déterminer l'expression de G(x) en fonction de x.
- b) En déduire l'expression de H(x) en fonction de x.

Exercice 2

Soit A =
$$\begin{pmatrix} -8 & -10 \\ 5 & 7 \end{pmatrix}$$
.

A l'aide d'un système, déterminer les valeurs propres de A, et une base de chacun des sous-espaces propres associés.

Exercice 3

On considère la matrice $A = \begin{pmatrix} -5 & -8 & -3 \\ 3 & 6 & 3 \\ 2 & 2 & 0 \end{pmatrix}$.

- 1) A est-elle inversible ? En déduire une valeur propre de A.
- 2) Déterminer l'ensemble des valeurs propres de A.

Exercice 4 – Pour aller plus loin:

- 1) Soit β un réel positif ou nul. Etudier, en distinguant les cas suivant les valeurs de β la nature de l'intégrale $\int_e^{+\infty} \frac{dt}{t(\ln(t))^{\beta}}.$ Dans le cas où elle est convergente, déterminer sa valeur.
- 2) De manière générale, soit α et β deux réels positifs ou nuls.

Etudier, en distinguant les cas suivant les valeurs de α et β la nature de l'intégrale $I_{\alpha, \beta} = \int_{e}^{+\infty} \frac{dt}{t^{\alpha} (\ln(t))^{\beta}}$.