Soutien – Vendredi 27 Septembre 2024 Suites et séries

Exercice 1 Les trois questions sont indépendantes

- 1) Montrer que la série $\sum_{n\geq 2} \frac{n^2}{3^n}$ converge et déterminer $\sum_{n=2}^{+\infty} \frac{n^2}{3^n}$.
- 2) Soit $x \in [0;1[$.
- a) Montrer que $\forall n \in \mathbb{N}^*, \frac{x^n}{n} \leq x^n$.
- b) La série $\sum_{n \ge 1} \frac{x^n}{n}$ est-elle convergente ?
- 3) Montrer que la série $\sum_{n \ge 0} \exp(-n^2)$ est convergente.

Exercice 2

Soit f la fonction définie sur]0; $+\infty$ [par : $f(x) = -\frac{x}{2} + \ln(x) + 2$.

On admet que l'équation f(x)=x admet une unique solution α sur $[1;+\infty[$, et que $1<\alpha<2.$

On donne :
$$\frac{3\ln(10)}{\ln(2)} \approx 9,96$$

Soit (u_n) la suite définie par : $\left\{ \begin{array}{l} u_0\!=\!\ 1 \\ \forall n\in {\rm I\! N},\, u_{n+1}\!=\!\ f(u_n) \end{array} \right. .$

- 1) Montrer que $\forall n \in \mathbb{N}$, u_n existe et $1 \le u_n \le \alpha$.
- 2) Montrer que (u_n) converge et déterminer sa limite.
- 3) a) Montrer que $\forall n \in \mathbb{N}, \alpha u_{n+1} \leq \frac{1}{2}(\alpha u_n)$.
- b) Montrer que $\forall n \in {\rm I\! N}, \, 0 \leq \alpha u_n \leq \frac{1}{2^n}.$
- 4) Déterminer un rang n_0 à partir duquel u_n est une valeur approchée de α à $10^{\text{--}3}$ près.

Exercice 3 (d'après EDHEC)

Pour tout entier $n \ge 1$, on définit la fonction f_n par $\forall x \in \mathbb{R}^+$, $f_n(x) = x^n + 9x^2 - 4$.

- 1) a) Montrer qu'il existe un unique réel u_n strictement positif tel que $f_n(u_n) = 0$.
- b) Calculer u₂.
- c) Vérifier que \forall n \in \mathbb{N}^* , u_n \in]0; 2/3[.
- 2) a) Montrer que $\forall x \in]0;1[, f_{n+1}(x) < f_n(x)$
- b) En déduire le signe de $f_n(u_{n+1})$ puis les variations de la suite (u_n) .
- c) Montrer que la suite (u_n) est convergente vers un réel L qu'on ne cherche pas à déterminer pour l'instant.
- 3 a) En utilisant la question 1.c), déterminer la limite de u_nⁿ.
- b) Donner enfin la valeur de L.