T.D. n°2: Suites récurrentes

Exercice 1

On note $f : \mathbb{R} \longrightarrow \mathbb{R}$ l'application de classe C^2 , définie, pour tout $x \in \mathbb{R}$, par : $f(x) = x - \ln(1 + x^2)$ On considère la suite $(u_n)_{n \ge 0}$ définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Ecrire un programme en Python qui détermine un entier n tel que $u_n \le 10^{-3}$.

Exercice 2

On note $f:]0; +\infty[\longrightarrow \mathbb{R}]$ l'application définie, pour tout x > 0, par $: f(x) = 1 + \frac{\ln(x)}{x}$.

On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 2$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1) Ecrire un programme en Python qui détermine le plus petit entier naturel n tel que $\left|u_n-1\right|<10^{-3}$
- 2) Déterminer un rang n pour lequel un est une valeur approchée de 1 à 10⁻⁴ près.

Exercice 3

On considère la suite définie par : $\begin{cases} u_0 = 4 \\ \forall n \in \mathbb{N}, \, u_{n+1} = 4 + ln(u_n) \end{cases} .$

On admet que (u_n) converge vers un réel L. On admet également que $\forall n \in \mathbb{N}, \left|u_n - L\right| \leq \frac{1}{4^{n-1}}$.

- 1) Ecrire un programme Python qui déterminer une valeur approchée de L à 10⁻⁴ près à l'aide d'une boucle while.
- 2) Ecrire un programme Python qui déterminer une valeur approchée de L à 10⁻⁴ près à l'aide d'une boucle for.
- 3) L'équation $x = 4 + \ln(x)$ admet-elle une solution ? Si oui, quelle information a-t-on sur cette solution ?

Exercice 4

On considère la suite $(u_n)_{n \,\geq\, 1}$ définie par : $\forall \ n \in {\rm I\! N}^*, \, u_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}.$

On admet que (u_n) converge un réel α , que l'on cherche à déterminer.

On admet qu'on a également : $\forall n \in \mathbb{N}^*, \left| u_n - \alpha \right| \leq \frac{1}{n+1}$.

- 1) Ecrire un programme Python qui déterminer une valeur approchée de α à 10^{-3} près à l'aide d'une boucle while.
- 2) Donner une valeur approchée de e^{α} . Quel semble être la valeur de α ?

Exercice 5

Ecrire un programme qui demande deux entiers à l'utilisateur, stocke les valeurs dans les variables a et b, échange les valeurs de a et b, puis affiche les nouvelles valeurs.

On pourra utiliser une variable auxiliaire (qu'on appellera c par exemple).

Exercice 6

Dans ce problème, on considère la suite $(u_n)_n \in \mathbb{N}$ définie par $u_0 = 0$, $u_1 = 1$ et la relation pour tout n de \mathbb{N} , $u_{n+2} = u_{n+1} + u_n$.

On propose la séquence Python suivante :

```
n=int(input('Donnez la valeur de n :'))
u= 0; v=1
for k in range(n-1)
temp= ...; v= ...; u= ...
print(....)
```

Compléter cette séquence aux quatre places signalées par des pointillés de façon que la valeur affichée soit u_n .