Thème: Projecteurs et symétries

Définition:

Soit £ un espace vectoriel

Soit p un endomorphisme de \mathcal{E} . Si $\mathbf{p}^2 = \mathbf{p}$, on dit que p est un **projecteur**.

Soit s un endomorphisme \mathcal{E} . Si $\mathbf{s}^2 = \mathbf{id}_{\mathbf{E}}$, on dit que s est une **symétrie**.

Exercice

Dans l'espace vectoriel $\mathcal{E} = \mathcal{M}_{n,1}(\mathbb{R})$, on considère la base canonique \mathcal{B} .

Partie A

Soit p un projecteur de E. On note P la matrice de p dans la base B.

- 1) Pour $k \ge 1$, déterminer p^k .
- 2) Déterminer les seules valeurs propres possibles de P.
- 3) a) Soit $x \in \mathcal{E}$. On pose y = x p(x). Montrer que $y \in Ker(p)$.
- b) En déduire que tout élément de E est somme d'un élément de Im(p) et d'un élément de Ker(p).
- 4) a) Par une double-inclusion, montrer que $E_1(P) = Im(p)$
- b) Montrer que P est diagonalisable. Quelle est la matrice de p dans une base de vecteurs propres ?
- 5) On pose $q = id_{\mathcal{E}} p$.
- a) Montrer que q est aussi un projecteur.
- b) Déterminer p o q et q o p.
- c) Posons f = 2p + q. Pour $k \in \mathbb{N}$, déterminer l'expression de f^k en fonction de k.
- 6) Montrer que $s = 2p id_{\mathcal{E}}$ est une symétrie de \mathcal{E} .

Partie B

Soit s une symétrie de E. On note S sa matrice dans la base B.

- 1) Montrer que s est bijective et exprimer s⁻¹ en fonction de s.
- 2) Déterminer les seules valeurs propres possibles de S.
- 3) Soit $\mathcal{F} = \{x \in \mathcal{E} / s(x) = x\}$ et $\mathcal{G} = \{x \in \mathcal{E} / s(x) = -x\}$.
- a) Ecrire \mathcal{F} et \mathcal{G} comme des noyaux d'application linéaires et comme des sous-espaces propres.
- b) Soit $x \in \mathcal{E}$. En remarquant que $x = \frac{x + s(x)}{2} + \frac{x s(x)}{2}$, montrer que x peut s'écrire comme la somme d'un

élément de F et d'un élément de G.

c) Soit f une fonction définie sur IR. Par analogie, montrer que f peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire.