Thème: Déterminant et trace

Rappel:

Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$. Si $A = (a_{i,j})_{1 \le i \le n}$, $1 \le j \le n$ et $B = (b_{i,j})_{1 \le i \le n}$, $1 \le j \le n$ alors

$$AB = (c_{i,j})_{1 \leq i \leq n}, \ _{1 \leq j \leq n}, \ avec \ c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} \ \forall \ (i,j) \in \ \{1, \ \ldots, \ n\}^2$$

1. Trace d'une matrice

Soit $n \ge 1$. On définit l'application tr (trace) de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} de la manière suivante :

Si
$$A = (a_{i,j})_{1 \le i \le n, 1 \le j \le n}$$
, alors $\mathbf{tr}(A) = \sum_{i=1}^{n} \mathbf{a}_{i,i}$ (somme des coefficients diagonaux).

- 1) Montrer que tr est une application linéaire de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} .
- 2) a) Montrer que $\forall A \in \mathcal{M}_n(\mathbb{R}), \forall B \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr}(AB) = \operatorname{tr}(BA)$
- b) (Application) Montrer qu'il n'existe pas de matrices $A \in \mathcal{M}_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$ telles que $AB BA = I_n$.
- 3) Soit $A \in \mathcal{M}_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$. Montrer que si A et B sont semblables, alors tr(A) = tr(B).
- 4) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que si A est diagonalisable, alors tr(A) est égale à la somme des valeurs propres comptées avec leur ordre de multiplicité (c'est-à-dire la dimension des sous-espaces propres).

2. Déterminant d'une matrice de M2(IR)

- 1) a) Montrer que $\forall A \in \mathcal{M}_2(\mathbb{R}), \forall B \in \mathcal{M}_2(\mathbb{R}), \det(AB) = \det(A)\det(B).$
- b) Montrer que $\forall A \in \mathcal{M}_2(\mathbb{R})$, si A est inversible, alors $\det(A^{-1}) = \frac{1}{\det(A)}$.
- c) En déduire que $\forall A \in \mathcal{M}_2(\mathbb{R}), \forall B \in \mathcal{M}_2(\mathbb{R}), \text{ si } A \text{ et } B \text{ sont semblables, alors } \det(A) = \det(B).$
- 2) Soit $A \in \mathcal{M}_2(\mathbb{R})$. Si A est diagonalisable, exprimer $\det(A)$ en fonction des valeurs propres de A.

Question en plus:

Soit $A \in \mathcal{M}_2(\mathbb{R})$ et $\lambda \in \mathbb{R}$.

Exprimer $det(A - \lambda I_2)$ en fonction dedet(A) et tr(A).

A retenir : Si A est diagonalisable : $\begin{cases} tr(A) = \\ det(A) = \end{cases}$